System predicts 85 percent of cyber-attacks using input from human experts
Today's security systems usually fall into one of two categories: human or machine. So-called "analyst-driven solutions" rely on rules created by living experts and therefore miss any attacks that don't match the rules. Meanwhile, today's machine-learning approaches rely on "anomaly detection," which tends to trigger false positives that both create distrust of the system and end up having to be investigated by humans, anyway.
Read more »